122 research outputs found

    A new composition-sensitive parameter for Ultra-High Energy Cosmic Rays

    Get PDF
    A new family of parameters intended for composition studies in cosmic ray surface array detectors is proposed. The application of this technique to different array layout designs has been analyzed. The parameters make exclusive use of surface data combining the information from the total signal at each triggered detector and the array geometry. They are sensitive to the combined effects of the different muon and electromagnetic components on the lateral distribution function of proton and iron initiated showers at any given primary energy. Analytical and numerical studies have been performed in order to assess the reliability, stability and optimization of these parameters. Experimental uncertainties, the underestimation of the muon component in the shower simulation codes, intrinsic fluctuations and reconstruction errors are considered and discussed in a quantitative way. The potential discrimination power of these parameters, under realistic experimental conditions, is compared on a simplified, albeit quantitative way, with that expected from other surface and fluorescence estimators.Comment: 27 pages, 17 figures. Submitted to a refereed journa

    Effect of multiple reusing of simulated air showers in detector simulations

    Full text link
    The study of high energy cosmic rays requires detailed Monte Carlo simulations of both, extensive air showers and the detectors involved in their detection. In particular, the energy calibration of several experiments is obtained from simulations. Also, in composition studies simulations play a fundamental role because the primary mass is determined by comparing experimental with simulated data. At the highest energies the detailed simulation of air showers is very costly in processing time and disk space due to the large number of secondary particles generated in interactions with the atmosphere. Therefore, in order to increase the statistics, it is quite common to recycle single showers many times to simulate the detector response. As a result, the events of the Monte Carlo samples generated in this way are not fully independent. In this work we study the artificial effects introduced by the multiple use of single air showers for the detector simulations. In particular, we study in detail the effects introduced by the repetitions in the kernel density estimators which are frequently used in composition studies.Comment: 15 pages and 4 figure

    Neutrino initiated cascades at mid and high altitudes in the atmosphere

    Get PDF
    High energy neutrinos play a very important role for the understanding of the origin and propagation of ultra high energy cosmic rays (UHECR). They can be produced as a consequence of the hadronic interactions suffered by the cosmic rays in the acceleration regions, as by products of the propagation of the UHECR in the radiation background and as a main product of the decay of super heavy relic particles. A new era of very large exposure space observatories, of which the JEM-EUSO mission is a prime example, is on the horizon which opens the possibility of neutrino detection in the highest energy region of the spectrum. In the present work we use a combination of the PYTHIA interaction code with the CONEX shower simulation package in order to produce fast one-dimensional simulations of neutrino initiated showers in air. We make a detail study of the structure of the corresponding longitudinal profiles, but focus our physical analysis mainly on the development of showers at mid and high altitudes, where they can be an interesting target for space fluorescence observatories.Comment: To appear in Astroparticle Physic

    Enhancing the Pierre Auger Observatory to the 10^{17} to 10^{18.5} eV Range: Capabilities of an Infill Surface Array

    Get PDF
    The Pierre Auger Observatory has been designed to study the highest-energy cosmic rays in nature (E > 10^{18.5} eV). The determination of their arrival direction, energy and composition is performed by the analysis of the atmospheric showers they produce. The Auger Surface Array will consist of 1600 water Cerenkov detectors placed in an equilateral triangular grid of 1.5 km spacing. The aim of this paper is to show that the addition of a "small" area of surface detectors at half or less the above mentioned spacing would allow a dramatic increase of the physical scope of this Observatory, reaching lower energies at which the transition from galactic to extragalactic sources is expected.Comment: 21 pages, 5 figures, accepted for publication in Nucl. Instr. & Meth. in Phys. Res.

    An accurate analytic description of neutrino oscillations in matter

    Full text link
    A simple closed-form analytic expression for the probability of two-flavour neutrino oscillations in a matter with an arbitrary density profile is derived. Our formula is based on a perturbative expansion and allows an easy calculation of higher order corrections. The expansion parameter is small when the density changes relatively slowly along the neutrino path and/or neutrino energy is not very close to the Mikheyev-Smirnov-Wolfenstein (MSW) resonance energy. Our approximation is not equivalent to the adiabatic approximation and actually goes beyond it. We demonstrate the validity of our results using a few model density profiles, including the PREM density profile of the Earth. It is shown that by combining the results obtained from the expansions valid below and above the MSW resonance one can obtain a very good description of neutrino oscillations in matter in the entire energy range, including the resonance region.Comment: 16 pages,6 figure

    Earth magnetic field effects on the cosmic electron flux as background for Cherenkov Telescopes at low energies

    Get PDF
    Cosmic ray electrons and positrons constitute an important component of the background for imaging atmospheric Cherenkov Telescope Systems with very low energy thresholds. As the primary energy of electrons and positrons decreases, their contribution to the background trigger rate dominates over protons, at least in terms of differential rates against actual energies. After event reconstruction, this contribution might become comparable to the proton background at energies of the order of few GeV. It is well known that the flux of low energy charged particles is suppressed by the Earth's magnetic field. This effect strongly depends on the geographical location, the direction of incidence of the charged particle and its mass. Therefore, the geomagnetic field can contribute to diminish the rate of the electrons and positrons detected by a given array of Cherenkov Telescopes. In this work we study the propagation of low energy primary electrons in the Earth's magnetic field by using the backtracking technique. We use a more realistic geomagnetic field model than the one used in previous calculations. We consider some sites relevant for new generations of imaging atmospheric Cherenkov Telescopes. We also study in detail the case of 5@5, a proposed low energy Cherenkov Telescope array.Comment: To appear in Astroparticle Physic

    Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory

    Get PDF
    Data from the Pierre Auger Observatory are analyzed to search for anisotropies near the direction of the Galactic Centre at EeV energies. The exposure of the surface array in this part of the sky is already significantly larger than that of the fore-runner experiments. Our results do not support previous findings of localized excesses in the AGASA and SUGAR data. We set an upper bound on a point-like flux of cosmic rays arriving from the Galactic Centre which excludes several scenarios predicting sources of EeV neutrons from Sagittarius AA. Also the events detected simultaneously by the surface and fluorescence detectors (the `hybrid' data set), which have better pointing accuracy but are less numerous than those of the surface array alone, do not show any significant localized excess from this direction.Comment: Matches published versio

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.13.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (386+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (6913+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic
    corecore